Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhong-Jun Gao, Han-Dong Yin,* Gang Li and Da-Qi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail: handongyin@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.027$
$w R$ factor $=0.071$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[triphenyltin(IV)]- μ-6-oxo-1,6-dihydropyridine-3-carboxylato]

The title compound, $\left[\operatorname{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)\right]$, possesses an infinite chain structure. The $\mathrm{SnO}_{2} \mathrm{C}_{3}$ centre has distorted trigonal-bipyramidal geometry with the O atoms in the apical positions. A strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond results in the formation of double chains.

Comment

The title compound, (I) (Fig. 1), possesses an infinite onedimensional chain structure arising from $\mathrm{Sn}-\mathrm{O}$ bridges to the 6-hydroxy-3-pyridinecarboxylate ligand, one of which is substantially longer than the other (Table 1).

(I)

The Sn atom has distorted trigonal-bipyramidal geometry, with atoms O1 and O3 ${ }^{\mathrm{i}}$ [symmetry code: (i) $\left.x, y-1, z\right]$ in axial positions $\left[\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}=175.31(9)^{\circ}\right]$ and the C atoms of the three phenyl groups in equatorial positions. The sum of the equatorial $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles is 359.2°, indicating approximate coplanarity for these atoms. The $\mathrm{SnO}_{2} \mathrm{C}_{3}$ geometry in (I) is similar to those seen previously in related compounds (Xie et al., 1991).

A strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2) between the NH group of the pyridine ring and the non-coordinated O2 atom of a nearby carboxylate group results in the formation of a double chain parallel to b (Fig. 2).

Experimental

A mixture of triphenyltin oxide $(1.4322 \mathrm{~g}, 2.0 \mathrm{mmol})$ and 6 hydroxynicotinic acid $(0.5564 \mathrm{~g}, 4.0 \mathrm{mmol})$ in methanol (80 ml) was heated under reflux for 8 h . The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) to yield blocks of (I). Yield 1.3862 g , 71%, m.p. 483 K. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Sn}$: C 59.05, H 3.92 , N 2.87%; found: C 59.02 , H 3.96, N 2.91%.

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry codes: (i) $x, y-1$, z; (ii) $x, y+1, z$.]

Figure 2
Part of a double chain in (I), with the $\mathrm{N} \cdots \mathrm{O}$ hydrogen-bond contacts shown by dashed lines. H atoms have been omitted for clarity.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)\right]$
$M_{r}=488.09$
Monoclinic, $P 2_{1} / c$
$a=9.5629(17) \AA$
$b=10.6579(19) \AA$
$c=21.353(4) \AA$
$\beta=101.155(3)^{\circ}$
$V=2135.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5143 reflections
$\theta=2.2-27.8^{\circ}$
$\mu=1.22 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.49 \times 0.46 \times 0.41 \mathrm{~mm}$

Data collection

Bruker SMART CCD	3755 independent reflections
\quad diffractometer	3053 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.041$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1998)	$h=-9 \rightarrow 11$
$T_{\min }=0.586, T_{\max }=0.635$	$k=-12 \rightarrow 12$
10839 measured reflections	$l=-24 \rightarrow 25$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.034 P)^{2}\right. \\
\quad+0.6145 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.52 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }= \\
=
\end{array} 0.47 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=1.00$
3755 reflections
262 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Sn1-C19	$2.133(3)$	$\mathrm{Sn} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.356(2)$
$\mathrm{Sn} 1-\mathrm{C} 13$	$2.134(3)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.292(4)$
$\mathrm{Sn} 1-\mathrm{C} 7$	$2.137(3)$	$\mathrm{C} 1-\mathrm{O} 2$	$1.233(4)$
$\mathrm{Sn} 1-\mathrm{O} 1$	$2.150(2)$		
$\mathrm{C} 19-\mathrm{Sn} 1-\mathrm{C} 13$	$130.80(12)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 1$	$90.01(10)$
$\mathrm{C} 19-\mathrm{Sn} 1-\mathrm{C} 7$	$115.76(12)$	$\mathrm{C} 19-\mathrm{Sn} 1-\mathrm{O} 3^{\mathrm{i}}$	$83.52(11)$
$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{C} 7$	$112.63(12)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$87.84(11)$
$\mathrm{C} 19-\mathrm{Sn} 1-\mathrm{O} 1$	$92.09(10)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{OB}^{\mathrm{i}}$	$90.42(10)$
$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O} 1$	$96.30(11)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O}^{\mathrm{i}}$	$175.31(9)$
Symmery			

Symmetry code: (i) $x, y-1, z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2 \mathrm{ii}}$	0.86	1.95	$2.785(4)$	165

H atoms were positioned geometrically $[\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$] and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xie, Q. L., Xu, X. H., Wang, H. G., Yao, X. K., Wang, R. J., Zhang, Z. G. \& Hu, J. M. (1991). Acta Chim. Sin. 49, 1085-1093.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

